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Propagation dynamics of nonlinear chirped optical laser
pulses in a two-level medium
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We investigate the propagation dynamics of nonlinear chirped optical laser pulses in a two-level medium.
For certain chirp strength and chirp width, an incident 2π nonlinear chirped pulse will split into optical
precursors and a stable self-induced transparency soliton. This is caused by the particular Fourier spectrum
that includes not only central resonant frequency components but also high-frequency and low-frequency
sidebands. Moreover, the effects of chirp parameters on the evolution of nonlinear chirped pulses are also
discussed.
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The coherent interaction between a laser pulse and a
two-level system has received much experimental and
theoretical attention[1]. For example, the famous area
theorem[2,3] could explain many interesting features, such
as self-induced transparency (SIT). It predicts that an in-
cident pulse with area (the integral of the absolute mag-
nitude of the field over time) greater than π is reshaped
into a number of 2π sech-shaped pulses by propagating.
In the last decades, SIT effect has been an area of active
research in atomic gases and semiconductors[4−7]. With
the development of ultrafast laser technology, much work
has been done to extend this analysis to few-cycle ultra-
short pulses[7−10]. Xiao et al. investigated the propaga-
tion of 5-fs pulse in a two-level atom medium[7]. They
found that the variation of the few-cycle pulse area was
caused by the splitting of the pulse, but not by the broad-
ening or compression of the pulse as in the case of long
pulse[2]. For large area pulse, Hughes proposed that the
area under individual carriers might cause themselves
Rabi flopping, which could lead to carrier-wave reshaping
and significantly higher spectral components[8] and even
the generation of soft X-ray[9].

On the other hand, extensive studies have manifested
that chirping can have much impact on laser pulses when
it propagates through different media. Eberly has red-
erived the area theorem, modifying it to include pulse
chirping and homogeneous damping, and obtained a new
equation for the evolution of the pulse phase[4]. Hmurcik
et al. found that when the incident pulse was chirped, the
McCall-Hahn area theorem was no longer valid and that
higher area was required for the SIT to occur in coherent
pulse propagation[11,12]. The results demonstrated that
the amplitude of the asymptotically emerging solitons de-
creased monotonously with increasing chirp strength and
that when the linear chirp rate was sufficiently large, the
soliton character would be lost completely and only lin-
ear dispersive radiation existed. Moreover, in contrast to

the smooth degradation of the soliton content with in-
creasing chirp strength, Desaix et al. found a different
behavior wherein the initial pulse split into two or more
separated soliton pairs[13]. However, they only focused
on the critical parameters such as pulse area and chirp
strength for the SIT to occur by means of the numerical
solution of the Zakh-Shabat eigenvalue problem. Mean-
while, Song et al. investigated the impact of linear chirp
rate on the propagation and spectral features during
propagation[14]. Recently, a nonlinear chirped laser pulse
with phase variation φ(t) = β tanh (t/σ) has attracted
wide attention[15,16]. The phase of the pulse is still linear
for small t, but the increase, although still monotonous,
saturates at a finite value as t → ±∞. This kind of chirp
form is the source of motivation of this study.

In this letter, we investigate the propagation dynamics
of nonlinear chirped laser pulses in a two-level medium.
An incident 2π nonlinear chirped pulse with certain chirp
strength and chirp width will evolve into sub-pulses, in-
cluding optical precursors and a stable SIT soliton. By
increasing the chirp strength |β| or decreasing the chirp
width σ, a larger intensity SIT soliton forms. Moreover,
the splitting of an initial pulse into separated optical pre-
cursors and SIT soliton pulse could also occur for other
forms of chirp.

Considering the evolution of a laser pulse along the z
axis in vacuum into an input interface of a resonant two-
level medium at z = 31 µm, the propagation dynamics
can be described by the full-wave Maxwell-Bloch equa-
tions:

∂tHy = − 1
µ0

∂zEx,

∂tEx = − 1
ε0

∂zHy − 1
ε0

∂tPx,

∂tu = −ω0v − u

T1
,

(1)
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∂tv = ω0u + 2Ωw − v

T1
,

∂tw = −2Ωv − w − w0

T2
,

where Ex and Hy are the electric and magnetic fields,
and ε0 and µ0 are the electric permittivity and the mag-
netic permeability in vacuum, respectively. T1 and T2

are the polarization and population relaxation times, re-
spectively. ω0 is the transition frequency of the system
and Ω = dEx/~ is the Rabi frequency. The terms u,
v, and w represent the dispersion, absorption, and pop-
ulation difference between the upper and lower states,
respectively. The macroscopic polarization is Px = Ndu,
where N is the density of the medium and d is the dipole
moment.

We consider a sech-shaped laser pulse with a phase
variation, which can be written as

E (z0, t) = E0sech [1.76 (t − t0) /τp]
· cos [ωp (t − t0) + φ (t − t0)] , (2)

where ωp is the central carrier frequency, E0 is the maxi-
mum electric field, t0 is the middle of the pulse envelope,
and τp is the duration of the incident pulse intensity en-
velope.

The phase variation has the following time-varying hy-
perbolic tangent form:

φ(t − t0) = β tanh [(t − t0)/σ] , (3)

where the parameter β denotes the chirp strength and
σ = nT with T = 2π/ωp is the chirp width, which deter-
mines the temporal width of the chirp variation.

In the following analysis, the medium is initialized

Fig. 1. (Color online) Normalized electric fields at the re-
spective propagation distances of 30, 150, 350 µm for the
incident (a) chirp-free pulse and (b) nonlinear chirped pulse
with parameters of β = 3, σ = 3T ; the inset shows the
delayed soliton and the corresponding population inversion
at z = 350 µm.

Fig. 2. (Color online) (a) Spectrum of the incident pulse with
β = 3, σ = 3T ; (b) spectra of the soliton (red dashed line)
and the oscillatory tail before the soliton (blue solid line) at
z = 350 µm.

with u = v = 0 and the population difference is w0 = −1
at t = 0. The material and laser pulse parameters based
on Ref. [7] are ωp = ω0 = 2.3 fs−1 (λ = 830 nm),
d = 2 × 10−29 C · m, N = 2 × 1018 cm−3, and
T1 = T2 = 1 ns. The input envelope area for the pulse is
A = dE0τpπ/1.76~, with a 2π pulse corresponding to a
peak amplitude E0 = 4.673× 108 V/m or an intensity of
I = 5.76 × 1010 W/cm2 for τp = 40 fs.

Figure 1(a) presents the evolution of a 2π chirp-free
(β = 0) optical pulse with τp = 40 fs at different prop-
agation distances. According to the area theorem, the
pulse is a standard SIT soliton, which could propagate
through the medium with no reshaping. For an incident
nonlinear chirped pulse with chirp parameters of β = 3
and σ = 3T , as can be seen from Fig. 1(b), a strong
reshaping effect occurs: the incident nonlinear chirped
pulse splits into two sub-pulses, including an oscillatory
structure and a soliton pulse. The soliton is a SIT soliton
since the calculated area is appropriately 2π, and a com-
plete Rabi oscillation (red dashed line) can be induced
as shown in the inset of Fig. 1(b). SIT solitons are sta-
ble and have slower velocity than the light velocity c in
vacuum. Thus, the separation between the front of the
oscillatory structure and the soliton becomes larger with
the increase in propagation distance. Furthermore, the
duration of the split SIT soliton is about 57.2 fs, which
is longer than that in the chirp-free case (τp = 40 fs).
Moreover, its velocity is slower than that in the chirp-free
case, as can be seen when we compare Figs. 1(a) and
(b).

In order to explore the physical essence of the phe-
nomenon, we treat the problem from the frequency
domain since chirp will generally generate a relatively
broader Fourier spectrum. The spectrum of the inci-
dent nonlinear chirped pulse with β = 3 and σ = 3T
is shown in Fig. 2(a). The spectrum contains not only
the central frequency components but also the separated
high-frequency and low-frequency sidebands. Further-
more, the spectra of the delayed SIT soliton (red line)
and the oscillatory tail (blue line) before the soliton at
z = 350 µm are presented in Fig. 2(b). This indicates
that the central resonant frequency components con-
tribute to the formation of the SIT soliton, while the
separated high-frequency and low-frequency sidebands
result in the oscillatory structure. The oscillatory struc-
ture is the result of the interference of the Sommerfeld
precursor (high-frequency components) and the Brillouin
precursor (low-frequency components)[17,18]. It is indi-
cated that precursors are contributed from the far-off
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resonance spectral components. Thus, it can be con-
cluded that a 2π nonlinear chirped pulse can split into
optical precursors and a 2π SIT soliton during propa-
gation. On the other hand, because only the central
resonant frequency components contribute to the for-
mation of the SIT soliton, the area will change to 2π
through pulse broadening. This is the reason why the
duration of the split SIT soliton is longer than that in
the chirp-free case.

We now consider the effects of chirp parameters on
pulse evolution. Figure 3(a) shows the normalized elec-
tric fields at the propagation distance z = 350 µm for
different chirp strengths of β = 2.8, 3.0, and 3.2 with
the same chirp width of σ = 3T . The velocity of the
split SIT soliton increases with the increase in the chirp
strength β. By comparing the corresponding spectra as
shown in Fig. 3(c), we can see that as the chirp strength
β increases, the intensity of the central resonant fre-
quency components also increases. As a result, a larger
SIT soliton is obtained for larger initial chirp strength β,
and the separation between the optical precursors and
the SIT soliton becomes smaller. The normalized elec-
tric fields at z = 350 µm and the corresponding spectra
for the incident pulses for the different chirp widths of
σ = 2.0T, σ = 3.0T , and σ = 4.0T with the same chirp
strength of β = 3 are shown in Figs. 3(b) and (d). As
the width σ increases, the intensity of the central reso-
nant frequency components decreases. Thus, a smaller
SIT soliton is obtained for larger chirp width σ, and the
separation between the optical precursors and the SIT
soliton becomes larger.

As mentioned above, the propagation dynamics lies on
the Fourier spectra of nonlinear chirped pulses containing
not only the central resonant components but also the
separated high-frequency and low-frequency sidebands.
If the chirp strength is small enough (|β| < 0.1), the pulse
will evolve into a bare SIT soliton as in the chirp-free case

Fig. 3. (Color online) Normalized electric fields at the prop-
agation distance of z = 350 µm for (a) β = 2.8, β =
3.0, β = 3.2 and (b) σ = 2.0T, σ = 3.0T, σ = 4.0T ; cor-
responding spectra of incident pulses with different initial
chirp parameters for (c) β = 2.8, β = 3.0, β = 3.2 and
(d) σ = 2.0T, σ = 3.0T, σ = 4.0T .

(β = 0). If the chirp strength is large enough (|β| > 5) or
the chirp width is sufficiently large (σ > τp/3), the SIT
soliton character is completely destroyed because the res-
onant frequency components almost disappear.

From the above analysis, it can be seen that the phe-
nomenon could extend to a wider class of pulses whose
Fourier spectra contain central resonant components and
separated high-frequency and low-frequency sidebands,
such as φ1(t) = αt

/√
1 + γt2 and φ2(t) = η arctan (t/κ).

In conclusion, we demonstrate that an incident 2π non-
linear chirped pulse with moderate chirp strength and
width will split into optical precursors and a SIT soliton
because its Fourier spectrum contains not only central
resonant frequency components but also separate high-
frequency and low-frequency sidebands. It is found that
a larger chirp strength |β| or smaller chirp width σ re-
sults in a larger 2π SIT soliton and a slight separation
between optical precursors and the SIT soliton. Addi-
tionally, the phenomenon can be extended to a wider
class of pulse shapes with different chirp forms, provided
that their Fourier spectra contain not only the central
resonant frequency components but also separated high-
frequency and low-frequency sidebands.
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